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LETTER TO THE EDITOR 

Main overlap dynamics for multistate neural networks 
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t Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 
141980, USSR 
t Centre de Physique ThCorique, CNRS Luminy-Case 907, F-13288 Marseille Cedex 9, 
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Received 1 January 1991 

Abstract. We present explidt formulae far one-step dynamics of retrieval-pattern 
errore (main overlap) for the q-stale Potts and (p < 4) clock neural networks. S- 
lutions of the fixed point equations and critic$ values of the saturation parametem 
oc(q) in the onestep approximation are considered in the Potts case. 

The understanding of neural networks exibiting learning and associative memory is 
based mainly on the king spin models (see, e.g., [l]) with energy function 

Here A = {1,2,. . . N} and a,, = {u~}~,,, is a configuration of neurons that have two 
main levels of activity, i.e. ui E QI = {-I,  1). The bonds {Jij}i,j6? (Jii = 0) are the 
synaptic efficacies which are assumed to be generated by learning in such a way that 
they ensure the dynamic stability of configurations { u ~ ) , , ~ ~ ~ ~  which are close to a 
stored patterns {<r}iEn =(J', p E [MI; [MI = { l , Z ,  ..., M}. According to the Hebb 
learning rule [2] 

M 

where the patterns {EP}pEIMl are taken to  be quenched random vectors with indepen- 
dent components t,!' E {&l); i  E [NI, and PI{<! = f l )  = 4. 

A generalization of the king neural network (1) and (2) (the Little-Hopfield model 
[3]) to the case of neurons with more then two discrete states has been considered in 
recent papers [4,5]. In [4] each neuron {ai} is viewed as a Potts spin with 9 possible 
states. Therefore, instead of binary encoded pattern configurations a,, may represent 
coloured or 9-grade shaded patterns. That paper was devoted to the thermodynamics 
of the Potts neural network and to a comparison of its properties with those of the 
LittleHopfield model. In [5], the same approach is used for the clock model. In a 
recent paper [ E ] ,  the authors introduced networks of three-state neurons, where the 
additional state embodies the absence of information. 
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The aim of this letter is to consider pam//e/ dynomics for two kinds of multisLate 
networks: for q-state Potts neural networks and for their clock model counterparts. 
We obtain explicit formulae for the corresponding main overlap evolution after one 
step of the eero-temperature parallel dynamics. Note that in the king case, the state 
of each neuron after one step of the zero-temperature parallel dynamics is equal to 
the sign of the corresponding induced local field whereas for the multistate case each 
neuron makes a more complicated decision comparing induced local fields in all states. 

We first present our scheme of calculation of the one-step evolution for the main 
overlap in the king case, which is also applicable in the general case of multistate 
neurons. Next, we derive the corresponding one-step formula for evolution of the 
main overlap for the q-state Potts neural network. Then we use the same method 
to derive an explicit one-step formula far evolution of the main overhp for the clock 
neural network for p = 3,4. Finally we make some concluding remarks. 

We first deal with the LittleHopfield neural network. Recal that in this case the 
patterns { C f } ,  ,,, p E [MI are independent identically distributed random variables 
(IIDRV) with & f E Q, = {-I, 1). The Hamiltonian (1) with (2) takes the form 

(A) . = - cci ['i>QA\i) 
i E A  

where we have introduced the local energy-function 

(3) 

Let the configuration at time 1 be uA(t). The zero-temperature parallel dynamics, 
see, e.g., [I] 

ui(t + 1) = sign[hy)(~,,~(t))l 
is equivalent to the following rule: 

U&) -+ U& t 1) : cf"[a,(t i 1); ~ ~ , ~ ( t ) ]  = max @)[oi; CA\&)] i E b. (5)  
o.EQr 

We introduce this-perhaps unusual-reformulation of the dynamics in terms of the 
local energies, because it allows an easy and transparent generalization to the zero- 
temperature dynamics in the Potts and clock models to be discussed below. 

Let the initial condition {ui(t = @))cc.n be IIDRV from QZ correlated with only one 
pattern I", i.e. 

Pr{u,(t = 0) = .$'} = $(I -t dfivmU(1 = 0)) p E [MI. (6) 

This means that for overlaps m];(! = 0) = (l/N) xu,, erui(l = 0) by the strong law 
of large numbers (SLLN) one obtains 

mc(t = 0) = lim mx(t = 0) = 6,,mY(0) P E [MI (7) 
N-a, 

where "(0) > 0 is an initial value of main overlap. For these initial conditions, the 
local energy-function (4) can be rewritten in the following form: 
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We now consider the -called ‘a’-limit, N -+ 00 at fixed a s M / N ,  in (8). By the 
initial conditions and the central limit theorem (CLT), the second term in brackets in 
(8) converges in distribution to @N(O, l),  where N(o,  b) denotes a Gaussian random 
variable with expectation a and variance b. Hence, the local energy functions (8) in 
the Wlim are random variables themselves 

ci[ui; a(t = O)] = ‘a’-limci[ui; uAIi(t = O)] 
d 

(9) 
d 
= [;ui[m”(t = 0) + f i N ( 0 ,  l)] i = 1,2, .  . . . 

Now we can determine the configuration a(t = 1) for the neural network ufler the 
‘a’-lim (see (5) and (9)) 

Gi(t = :) : ii[Gi(t = :I; G(t  = 0;; = iii% {E;,[,”(: = 0; + &$(O, :))I. (In) 
o , E Q I  

According to (10) one obtains 

i.e. the future state of ui is determined by the sign of the signal- and noise-contributions 
to the local energy. Hence, for the main overlap at  t = 0 we obtain a well known 
formula, namely 

The same arguments give m”(t = 1) = 0 for p # U because m”(#’)(t = 0) = 0. To 
calculate t h e  evolution of m’(t) for t 2 2, one needs more complicated arguments 

We deal next with the q-state Potts neural network. We suppose that each neuron 
has q > 2 levels of activity described by the Potts spin variables ui E [ 1,2,. . . , q} = 
Q p .  The stored patterns {Ff E Qp}iEA,p E [MI are taken to be IIDRV with PI{(: = 
k E Q p }  = l / q .  The corresponding energy function (cf (1) and (2)) assuma the form 

[6,71. 

which for q = 2 reduces essentially to  the Hamiltonian (1),(2). Here 4.; .) is the 
Kronecker delta. Zero-temperature parallel dynamics is defined now by 

ui( t )  - ui(t + 1) : cy)[ui(t + 1);uA\<(t)] = myp cY)[~~;u,,,~(t)] V i  E A .  (14) 
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We can now apply the above line of reasoning to derive the evolution of the main 
overlap for parallel dynamics in the case of a Potts neural network. Let the initial 
conditions {ui(t = O)}iEA be IIDRV such that 

where m"(0) > 0. For the Potts model, the overlaps (at finite A) are defined as 

where the prefactor is chosen so a4 t o  satisfy mx(t = 0) = 1 for ui(t = 0) = (f Vi  E A. 
By the initial condition (15) and the SSLN one obtains 

m'(t = 0) = lim mi(t  = 0) = E6(( f ;u i ( t  = 0)) - - = 6,,mY(0). (17) 
N-03 9 -  1 P '3 

For q = 2, equations (15) and (16) coincide with corresponding definitions for the 
Ising case. 

Let M$") = { p  E [MI \v : 6; = p , V i  E A}. Then by definition of the local energy 
function (13), one obtains 

- E i  [U;; QA\i(t = O)] = [a(F;;  V i )  - - m;\i(t = 0) + - 
P 'I (A) 

9 - 1  

x ; p ~ ~ ~ ) j E I N l \ i  [ a ( F ; ; u j ( t = O ) )  - - 9 'I . 

Here we have again separated the signal from the noise contribution to the local energy, 
and we have split latter into q terms, each favouring one of the possible Potts states. 
The pth such contribution will henceforth be called the pth component of the noise 
for short. 

By equation (15), we have 

for the statistics of individual contributions to the noise term in (18). According to 
the CLT for the ptb component of the noise in (18) one obtains 
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where we used the result that, by the SLLN, JMt)I/M + l / q ,  when M + 00. Hence, 
at  t = 0 the random local energy function (18) converges in distribution to the random 
variable 

a(t = O)] 2 ‘o’-lim-EIA)[ai;aA\i(t q = O)] 
q - 1  

(20) 

By the initial conditions (15) {NLp’(O; l)}p are independent Gaugsian variables. 
The confignratuon {ui(t = l)}i is defined hy relation (14) where the local energy 

function is given by (20). There are two different ways to achieve the max in (14), cf 
(20). Either (a) ui = c;, then 

or (b) ui = pmaX # .$‘, then 

In the latter case, pmax is defined through the following relation: 

for each fized malization of the independent Gaussian noises {N{!(O; l)}p. Which of 
the possible outcomes is chosen depends on the value of the difference 

ai = Ej.) - E ? )  = m*(t = 0) + /z[qp=cr(~; 1) - X ~ ~ . ~ ( O ;  I)]. (21) 

Equation (21) is an analogue of the standard signal-noise relation for the case of Potts 
netirons, cf (11). By (21) we obtain 

i f A i > O  

i f A i < O  
i.e. 6(ui(t = 1);ty) = O(Ai). (22) Ui(t  = 1) = 

Recall that {N&}, are independent. Hence 

and consequently by (21) and (22) we obtain 

Pr{Ai > O } = P r ( m Y ( t = O ) / ~ + ~ p ~ ~ r ( O ; l ) > ~ p . . , ( O ; l ) }  q(n - 
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As a result of (22) and (23) we obtain the following formula for the main overlap at 
t = 1 (cf (16)): 

q ‘I - - -+(*,>O}-- q -  1 

- - L{ q - 1  2Jm Jz;; -m dy exp(-$) 

As above, one obtains the result that m’(t = 1) = 0, for p # v, because m’(#”)(t = 
0) = 0. One can also check that for q = 2 equation (24) coincides with (12). 

We deal now with the clock neural network. As with the Potts neural network, 
each neuron has q levels of activity, i.e. ui E Q p  = { l ,  2 , .  . . , q}, but the energy of 
configuration U,, has a ‘clock form’ [5] 

Here again M patterns (Ou}uEIM]r [MI = {1,2, .  . . , M } ,  are described by IIDRV 
(O:}i€*, /I E [MI with Pr{Of = p E QP} = l /q .  The local energy function has 
the form, cf (25) 

and the dynamics a,,(t) + uA(t + 1)  for a finite A is defined by the relation 

ui(t) -+ ui(t + 1) : cY)[ui(t + l);u,,,,(t)] osyp cy)[ui; ~ ~ , ~ ( t ) ]  V i  E A .  (27) 

We define overlaps 

Let the initial conditions {ui(t = O)},€,, be IIDRV correlated with only one pattern E’ 

(29) 
1 
Q 

Pr{ui(t = 0) = O r }  = - + 6,,G,(mY(0)). 
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Here we choose C,(.) in such away that application of the SLLN for (28) with distri- 
bution (29) gives 

m'(t = 0) = lim m:(t = 0) == 6',mY(0) (30) N-CC 

where m"(0) # 0 is a value of main overlap for t = 0. 

But now the complexity of the ma-problem (27) increases very fast with q. Therefore, 
we restrict ourselves to q = 3 and 4, which have a deep relation to the Potts and Ising 
cases, respectively, and which allow one to treat them explicitly. 

For 9 = 3 and 4 one has G,,,(z) = ?p and G,,,(z) = z, correspondingly. As 
above, we  define an  appropriate (i-dependent) decomposition of the set [MI 

TG c-'c-!ate the EaiE ave-:!ap at t = 1, ??-e .'se the 88r.e !!ne of:e'Eaning 'E befnre. 

JU,;~ = {[M]\v : @/ =e; +p(modq- I), p =  D, 1,.  . . ,q  - I}  (31) 

Using this decomposition, we can write the local energy function (26) in the form 

I> cos[F(8; - U j ( t  = 0)) + 
u€Mi;,=o j € A \ i  

1 2T 
N x - c cos [ -(e; - U j ( t  = O))] 

9 u€Mi;. j € A \ ;  

where {Mp(!l; 
The max-problem (27) for the limiting local energy function (33) in the case of 

q = 3 can be resolved in the following ways (cf (21)). Either (a) ui = Or, in which 
case 

zre independent Gaussian random variables. 

Ei (a) = Eo' - 4J47j.{N1(O; $) + N*(O; 4)) 
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Here &: E m”(t = 0)+ &NoCO; 3). Which of the two channels, (a) or (b) is actually 
chosen depends, again, on the sign of the difference 

As a consequence one obtains 

According to (34) the event 

Using (35) and (36), we obtain for the main overlap at t = 1 (see (28)) the result that 
for N - cu 
m;,,(t = 1) = E - ui(t = 1)) I >  = +&(a;m”(O)) - (37) 

by the SLLN. 
The same calculations for the overlaps with p #.v give m”(#”)(t = 1) = 0. Note, 

that (37) is very similar to the corresponding formula for the Potts model for q = 3, 
cf (24). 

To resolve the max-problem (27) for the case q = 4 (see (33)), we have the following 
possibilities: 
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where E: E m”(t = 0) + m [ N o ( O ;  1) - N,(O; i)] and N E m [ N l ( O ;  f) - 
N.(O; +)I. Then, using independence of the random variables {Np(O; f)}i& we obtain 
the result that the event 

{ui(t = 1) = 8 3  = {E?) 2 ei (*I. ,ci ( 0 )  2 -ci ( b ) .  ,c i  ( 0 )  2 -ci (a) } 

= {mY(t = 0) + &7&.(0; 1) 2 &EN,~[O; l);mY!t = 01 

+ ~ N o 2 ( o ; l ) ~ - ~ ~ ~ , ( o ; l ) ; m ” ( t = O ) + ~ N o 2 ( O ; l )  > O }  

= @,(U; m”(0)). (39) 

Similarly, one obtains that Pr{ui(t = 1) = 0; + 2(mod4)} = @,(m;-m”(O)). If 
ui(t = 1) = 0; + 1(= 0; +3)(mod4), see (38), then cos[(Zn/q)(Oy -ui(t = l))] = 0 for 
q = 4. Therefore, by the SLLN for (28), in the limit N + 00 and by (38) and (39), we 
obtain for the main overlap at t = 1 the final result that 

Similar calculations give mP(#’)(t = 1) = 0. I t  is interesting to note that (40) coincides 
with equation (12). 

0.50 

q=6 

0.25 4 \ 
I 1  q=i 

0.00 
5.00 

U 0. 0 

Figure 1. Soluhns of the fixedpoint equation (i.e. m(t = 1)  = m(t = 0 )  = m* in 
(24)) for the &ate Pot@ model (YI functions of 01 for ’I = 2.3.4.5,6. 
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I5 'O0 1 

0.00 , , , , 
0. 5.do 10.00 rsbo 
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Figure 2. The critical value uc as B fundion of q for the Potts model (onestep 
approximation). 

We conclude this letter by making a few remarks. The explicit formulae derived 
here for the two types of xlul!iek!c x x s l  netwcrks allow one to estimate the depen- 
dence of the netwoik capacity as a function of the number q neuron activity levels, 
cf [4]. In particular, it is interesting to  compare the two kinds of mnltistate networks 
corresponding lo the Potts and clock neurons. Note that (37) coincides (up to vari- 
ance) with the corresponding formula (24) for the q = 3 Potts neural network. This 
could have been anticipated because the q = 3 clock model is equivalent to the q = 3 
Potts one. More striking (at first sight) is the full agreement bet,wcen (40) and the 
corresponding formula (12) for the Ising neural network. On the other band it is clear 
that for q = 4 and the special choice of the initial conditions (29), fluctuations in the 
transversal directions 0: + l(+3)(mod 1) are irrelevant, because for them cos(.) = 0. 

In figure 1 we present the fixed points ofequation (24) for the pstate Potts model. 
In the one-step approximation the transition from continuous behaviour of m*(a) 
at a,(q) to  discontinuous behaviour occurs at  q = 3. In figure 2 we present the 
dependence of the critical parameter at on q for q 2 2. 

The non-zero temperature case can be easily taken into account by the introduction 
into the dynamics of an additional thermal noise, see e.g. [6]. To go beyond the 
one-step calculations seems difficult, however. We are faced with the fundamental 
difficulty that one has to take into account a feedback, creating strong correlations 
and a complicated perturbation of the noises [7] which are independent and Gaussian 
only for the one-step parallel dynamics. 

We gratefully acknowledge Reimer Kuhn for reading the manuscript and valuable 
remarks. The first draft of this letter was written when one of the authors (VAZ) 
visited the Centre de Physique Thkorique, CNRS-Luminy, and SFB 123 of Heidelberg 
University. He thanks both organizations for the warm hospitality and support. 
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